Ro
 

En
 My mail@ifa
>> Scientific Divisions > Laboratory of Electrophysical and Electrochemical Treatment of Materials "Boris Lazarenco" > Recent publications
or


Contacts:
Institute of Applied Physics
5 Academiei str.
Chisinau, MD-2028
MOLDOVA (Rep. of)
phone: +(373) 22 738150
fax: +(373) 22 738149
email: [javascript protected email address]

Laboratory of Electrophysical and Electrochemical
Treatment of Materials ”Boris Lazarenko”

The Laboratory of Electrophysical and Electrochemical Treatment of Materials Boris Lazarenko was created in 2013 as a result of the merge of the Laboratory of Electrochemical Treatment of Materials and the Laboratory of Electroerrosive Methods of material Treatment and Antocorrosion Protection.

Fundamentals of innovative research into the field of electrochemical treatment of materials at the Institute of Applied Physics are connected with the name of its first director, a renown scientist, academician Boris Lazarenko (1910 – 1979). Those activities were followed and further developed by academician Yuri Petrov (1921-1990), the founder of the first-in-Moldova school of electrochemical technologies for materials treatment. The initial research and elaborations were connected with developing methods based on electrochemical dimensional treatment of metals and obtaining of wear-resistant galvanic coatings, mainly on the basis of iron group metals. At present the direction and the Laboratory is headed by corresponding member of the ASM, professor, doctor habilitate Alexandr Dikusar.

Head of laboratory:

    Ph.D. Sergiu Ivașcu
    cab. 140
    phone : + (373) 22
    fax : + (373) 22 738149

 

Laboratory Profile:

  • Study of dependences of high rate anodic and cathodic processes that occur under stationary and nonstationary conditions of electrolysis; design of new technological processes of electrochemical formation of machine components;
  • Investigations of dependences of electrochemical deposition of galvanic wear resistant coatings (iron, chromium, alloys) under stationary and nonstationary conditions of electrolysis; elaboration of technologies directed at hardening of machine components;
  • Dimensional electrochemical micro- and nanotreatment to obtain nanomaterials (coatings, nanocomposites, nanowires, etc.), research into their properties, and working out methods of their usage.
  • Studying the phenomena that accompany the discharge of electric discharges into the liquid and gas media; elaboration of new technological processes and improvement of existing ones.
  • Study of formatioin particularities of the structures on the surface, of the anticorrosive and physico-mechanical properties of the restored parts, manufactured and hardened by the electro-physical-chemical methods.

Recent Achievements:

  • General methods of calculation of the fields of rates, temperatures, concentrations and potentials have been developed for high rates of interphase exchange. Kinetic dependences of high-rate anode dissolution of various metals and alloys in the concentrated solutions of inorganic salts and alkalies adjusted to the conditions of electrochemical machining of metals have been investigated.
  • The phenomenon of thermokinetic instability of superficial coating layers - sharp, non-stationary increase in rates of electrochemical processes under the mutual influence of heat generation and rates of reactions has been revealed and investigated. Mechanisms of the description of transition to instability depending on the nature of kinetic limits of electrode process rates have been proposed.
  • Research into physical phenomena in an interelectrode gap and on the border of interphases has made it possible to prove the applications of pulse regimes in electrochemical treatment. New technological processes of electrochemical dimensional treatment of complex details profiles, stamps and compression forms, of artificial roughness creation on internal surfaces of pipes, of electrochemical grinding have been developed, etc.
  • Specific dependences allowing to determine properties of coating on the basis of iron and its alloys during their deposition have been established. New technological processes of electrochemical hardening and reconditioning of machine components have been developed.
  • Development of equipment for surface hardening of materials.

The laboratory possesses a range of performant/unique equipment and facilities, some of which are also available to non-IFA researchers. E.g:

2024

  • Bortsoi, T. Size Effect in Electroplating: Determination Method and Cell for Its Evaluation. Surf Eng Appl Elect. 2024, 60(1), 24—30. Doi: 10.3103/S1068375524010046.
     
  • Parshutin, V.V.; Koval՚, A.V.; Gorinchoi, V.V.; Lozan, V.I. Effect of Heteronuclear Salicylate Complex {[FeSr2(SalH)2(Sal)2(NO3)(DMA)4]}n on Corrosion of Steel St. 3 in Water. Surf Eng Appl Elect. 2026, 60(1), 109—121. Doi: 10.3103/S1068375524010137.

2023

  • Готеляк, А.В.; Дикусар, А.И. Влияние площади поверхности на скорость электроосаждения, состав и микротвердость Сo–W покрытий, осажденных из цитратной ванны. Электронная обработка материалов. 2023, 59(6), 1—7. Doi:10.52577/eom.2023.59.6.01.
     
  • Baranov, S.A. Surface energy in microwires. Review. Condensed Matter and Interphases. 2023, 25(2), 484—493. Doi 10.17308/kcmf.2023.25/11470.
     
  • Baranov, S.A. Natural ferromagnetic resonance in microwires and its applications. Brief review. Condensed Matter and Interphases. 2024, 25(4), 581—586. Doi 10.17308/kcmf.2023.25/11472.
     
  • Meshalkin, A.; Prisacar, A.; Triduh, G.; Abashkin, V.; Achimova, E., Tintaru, N. In situ study of chalcogenide thin films growth during vacuum thermal evaporation. În: AIP Conference Proceedings 2803 (2023). 11th International Advances in Applied Physics and Materials Science Congress & Exhibition, October 17-23, 2021, Fethiye, Turkley, p. 040001-1—040001-5. Doi: 10.1063/5.0143711.
     
  • Юрченко, Е.В.; Гилецки, Г.В.; Ватаву, С.А.; Петренко, В.И.; Харя, Д.; Бубулинкэ, К.; Дикусар, А.И. Состав, структура, износостойкость поверхностных наноструктур, получаемых при электроискровом легировании стали 65Г. Электронная обработка материалов. 2023, 59(5), 1—11. Doi: 10.52577/eom.2023.59.5.01.
     
  • Myrzak, V.A. Size Effect in the Rate of Electrodeposition of Co–W Coatings from a Citrate Bath. Surf Eng Appl Elect. 2023, 59(4), 438—442. Doi: 10.3103/S1068375523040105.
     
  • Likrizon, E.V.; Silkin, S.A.; Dikusar, A.I. Effect of Passive Oxide Film Structure and Surface Temperature on the Rate of Anodic Dissolution of Chromium-Nickel and Titanium Alloys in Electrolytes for Electrochemical Machining: Part 2. Anodic Dissolution of Titanium Alloys in Nitrate and Chloride Solutions. Surf Eng Appl Elect. 2023, 59(3), 255—263. Doi: 10.3103/S1068375523030134.
     
  • Koval, A.V. Peculiarities of Formation of Phase and Elemental Composition during Electrospark Alloying Using a Manual High-Frequency Vibrator. Surf Eng Appl Elect. 2023, 59(3), 271—280. Doi:10.3103/S1068375523030110.
     
  • Rukanskis, M.; Padgurskas, J.; Mihailov, V.; Rukuiža, R.; Žunda, A.; Baltakys, K.; Tučkutė, S. Investigation of the Lubricated Tribo-System of Modified Electrospark Coatings. Coatings. 2023, 13(5), 825-1—825-15. Doi: 10.3390/coatings13050825 (IF: 3,236).
     
  • Belevskii, S.S.; Gotelyak, A.V.; Ivashku, S.Kh.; Kovalenko, K.V.; Dikusar, A.I. Anodic Dissolution of Surface Layers as a Means of Increasing the Microhardness of Alloy Coatings of Iron Group Metals with Tungsten Prepared by Induced Codeposition. Surf Eng Appl Elect. 2023, 59(5), 549—555. Doi: 10.3103/S1068375523050034.
    Белевский, С.C.; Готеляк, А.В.; Ивашку, С.Х.; Коваленко, К.В.; Дикусар, А.И. Анодное растворение поверхностных слоев как метод повышения микротвердости покрытий сплавами металлов группы железа с вольфрамом, получаемых индуцированным соосаждением. Электронная обработка материалов. 2023, 59(3), 1—9. Doi:10.52577/eom.2023.59.3.01.
  • Dikusar, A.; Cuharuc, A.; Tsyntsaru, N. Innput of Moldova in shaping modern electrochemical science and technology. J Solid State Electr. 2023, 27(7), 1661—1673. Doi: 10.1007/s10008-023-05428-7 (IF: 2,747).

  • Dikusar, A.I.; Likrizon, E.V. Effect of the Structure of Passive Oxide Films and Surface Temperature on the Rate of Anodic Dissolution of Chromium–Nickel and Titanium Alloys in Electrolytes for Electrochemical Machining: Part 1. Anodic Dissolution of Chromium–Nickel Steel in a Nitrate Solution. Surf Eng Appl Elect. 2023, 59(2), 107—115. Doi: 10.3103/S1068375523020047.

  • Benkovsky, I.; Tsyntsaru, N.; Silkin, S.; Petrenko, V.; Pakstas, V.; Cesiulis, H.; Dikusar, A.  Synthesis, Wear and Corrosion of Novel Electrospark and Electrospark–Electrochemical Hybrid Coatings Based on Carbon Steels. Lubricants. 2023, 11, 205-1—205-16. Doi: 10.3390/lubricants11050205 (IF: 3,5).

  • Cesiulis, H.; Tsyntsaru, N. Eco-Friendly Electrowinning for Metals Recovery from Waste Electrical and Electronic Equipment (WEEE). Coatings. 2023, 13(3), 574-1—574-11. Doi: 10.3390/coatings13030574 (IF: 3,236).
     
  • Mihailov, V.; Kazak, N.; Ivashcu, S.; Ovchinnikov, E.; Baciu, C.; Ianachevici, A.; Rukuiza, R.; Žunda, A. Synthesis of Multicomponent Coatings by Electrospark Alloying with Powder Materials. Coatings. 2023, 13(3), 651-1—651-14. Doi: 10.3390/coatings13030651 (IF: 3,236).
     
  • Levinas, R.; Tsyntsaru, N.; Cesiulis, H.; Viter, R.; Grundsteins, K.; Tamašauskaitė-Tamašiūnaitė, L.; Norkus, E. Electrochemical Synthesis of a WO3/MoSx Heterostructured Bifunctional Catalyst for Efficient Overall Water Splitting. Coatings. 2023, 13(4), 673-1—673-19. Doi: 10.3390/coatings13040673 (IF: 3,236).
     
  • Baranov, S.A. Surface energy of micro- and nanowire. Ann Adv Chemistry. 2023, 7, 25—30. Doi: 10.29328/journal.aac.1001039.
     
  • Benkovskii, Yu.V.; Croitoru, D.M.; Petrenko, V.I.; Swtoichev, P.N.; Yurchenko, E.V.; Dikusar, A.I. Interrelation between the Composition of Steel Treated by Electrospark Alloying and the Properties of Resulting Composite Surface. Surf Eng Appl Elect. 2023, 59(1), 1—6. Doi: 10.3103/S1068375523010039.
     
  • Паршутин, В.В.; Коваль, А.В.; Горинчой, В.В.; Лозан, В.И.  Влияние гетероядерного салицилатного комплекса {[FeSr2(SalH)2(Sal)2(NO3)(DМА)4]}n на коррозию стали Ст. 3 в воде. Электронная обработка материалов. 2023, 59(1), 47—59. Doi: 10.52577/eom.2023.59.1.47.
     
  • Dikusar, A.I.; Belevskii, S.S. Macroscopic Size Effect in the Composition and Properties of Alloys of Iron Group Metals with Tungsten Prepared by Induced Codeposition: Alloy Deposition Mechanism and Its Implications. Surf Eng Appl Elect. 2023, 59(6), 699—711. Doi: 10.3103/S106837552306008X.
    Дикусар, А.И.; Белевский, С.С. Макроскопический размерный эффект состава и свойств покрытий сплавами металлов группы железа с вольфрамом при индуцированном соосаждении: механизм формирования и следствия. Электронная обработка материалов. 2024, 59(2), 1—15. Doi: 10.52577/eom.2023.59.1.01.

Patents

  • Parsutin, V.; Covali, A. Utilizarea extractului apos din frunze de nuc și tanină în calitate de inhibitoral coroziunii oțelurilor în apă (Use of aqueous walnut leaf extract and tannin as corrosion inhibitor of steels in water). Brevet de Invenție nr. MD 1633 din 2023.02.28.

2022

  • Борцой, Т. Размерный эффект в гальванотехнике: метод определения и ячейка для его оценки. Электронная обработка материалов. 2022, 58(6), 29—36. Doi: 10.52577/eom.2022.58.6.29.
     
  • Мырзак, В.А. Размерный эффект скорости осаждения Со-W покрытий из цитратной ванны. Электронная обработка материалов. 2023, 58(6), 37—41. Doi: 10.52577/eom.2022.58.6.37.
  • Baranov, S.A. Surface Energy and Production Micro-and Nanowire. Journal of  Nanosciences Research & Reports. 2022, 4(4), 1—4. Doi: 10.47363/JNSRR/2022(4)142.
     
  •  Baranov, S.A. Non-Classical Cluster Formation in Minerology. Aspects in Mining & Mineral Schience. 2022, 10(2), 1128—1130. Doi: 10.31031/AMMS.2022.10.000732.
     
  • Baranov, S.A. Surface tension problem for micro- and nanowires. Moldavian Journal of the Physical Sciences. 2022, 21(1), 78—85. Doi: 10.53081/mjps.2022.21-1.08.
     
  • Baranov, S.A.; Dikusar, A.I. Kinetics of Electrochemical Nanonucleation during Induced Codeposition of Iron-Group Metals with Refractory Metals (W, Mo, Re). Surf Eng Appl Elect. 2022, 58(5), 429—439. Doi: 10.3103/S1068375522050027.
     
  • Baranov, S.A. Surface energy for nanowire. Ann Math Phys. 2022, 5(2), 81—85. ISSN 2689-7636. Doi: 10.17352/amp.000043.
     
  • Vainoris, M.; Nicolenco, A.; Tsyntsaru, N.; Podlaha-Murphy, E.; Alcaide, F.; Cesiulis, H. Electrodeposited Fe on Cu foam as advanced fenton reagent for catalytic mineralization of methyl orange. Front Chem. 2022, 10, 977980-1—977980-10. Doi: 10.3389/fchem.2022.977980 (IF: 5,545).
     
  • Ликризон, Е.В.; Силкин, С.А.; Дикусар, А.И.  Влияние структуры пассивных оксидных пленок и поверхностной температуры на скорость анодного растворения хромоникелевых и титановых сплавов в электролитах для их электрохимической размерной обработки. Часть 2. Анодное растворение титановых сплавов в нитратных и хлоридных растворах. Электронная обработка материалов. 2022, 58(4), 1—11. Doi:10.52577/eom.2022.58.4.01.
     
  • Паршутин, В.В.; Парамонов, А.М.; Коваль, А.В. Коррозионные и электрохимические свойства сплавов системы Ni-Re, легированных цирконием, гафнием, вольфрамом и палладием. Электронная обработка материалов. 2022, 58(4), 55—69. Doi:10.52577/eom.2022.58.4.55.
  • Ликринзон, Е.В.; Дикусар, Г.К.; Силкин, С.А.; Дикусар, А.И. Высокоскоростное анодное растворение хромоникелевой стали в нитратном растворе при термокинетической неустойчивости оксидной пленки. Известия ВУЗов. Химия и химическая технология. 2022, 65(8), 77—84. Doi: 10.6060/ivkkt.20226508.6614.
     
  • Дикусар, А.И.; Ликризон, Е.В. Влияние структуры пассивных оксидных пленок и поверхностной температуры на скорость анодного растворения хромоникелевых и титановых сплавов в электролитах для их электрохимической размерной обработки. Часть 1. Анодное растворение хромоникелевой стали в нитратном растворе. Электронная обработка материалов. 2022, 58(3), 1—12. Doi: 10.52577/eom.2022.58.3.01.
     
  • Koval', A.V. Study of Corrosion Behavior of Coatings Produced on Steel with Electrospark Alloying Using a Hand High-Frequency Vibrator. Surf Eng Appl Elect. 2022, 58(2), 176—183. Doi 10.3103/S1068375522020041.
  • Dikusar, А.I.; Silkin, S.А. Formation and Breakdown of Oxide Films in High-Rate Anodic Dissolution of Chromium–Nickel Steels in Electrolytes for Electrochemical Machining. Surf Eng Appl Elect. 2022, 58(4), 313—322. Doi: 10.3103/S1068375522040056.
    Дикусар, А.И.; Силкин, С.А. Образование и разрушение оксидных пленок при высокоскоростном анодном растворении хромоникелевых сталей в электролитах для их электрохимической размерной обработки. Электронная обработка материалов. 2022, 58(2), 1—11. Doi: 10.52577/eom.2022.58.2.01.

  • Беньковский, Ю.В.; Кроитору, Д.М.; Петренко, В.И., Стойчев, П.Н.; Юрченко, Е.В.; Дикусар, А.И. Влияние состава стали на свойства композитной поверхности, получаемой электроискровым легированием. Электронная обработка материалов. 2022, 58(1), 1—8. Doi:10.52577/eom.2022.58.1.01.

2021

  • Kroitoru, D.M.; Silkin, S.A.; Kazak, N.N.; Ivashku, S.Kh.; Petrenko, V.I.; Poshtaru, G.I.; Yurchenko, V.I.; Yurchenko, E.V. Physico-Mechanical and Tribological Properties of Carbon-Containing Surface Nanocomposites Produced by Electrospark Alloying. Surf Eng Appl Elect. 2021, 57(6), 617—626. Doi: 10.3103/S1068375521060077.

  • Levinas, R.; Tsyntsaru, N.; Murauskas T.; Cesiulis, H.  Improved Photocatalytic Water Splitting Activity of Highly Porous WO3 Photoanodes by Electrochemical H+ Intercalation. Front Chem Eng. 2021, 3, 760700-1—760700-17. Doi: 10.3389/fceng.2021.760700.

  • Коваль, А.В. Особенности формирования фазового и элементного состава при электроискровом легировании ручным вибратором повышенной частоты. Электронная обработка материалов. 2021, 57(6), 14—24. Doi: 10.52577/eom.2021.57.6.14.

  • Bakavets, A.; Aniskevich, Y.; Ragoisha, G.; Mazanik, A.; Tsyntsaru, N.; Cesiulis, H.; Streltsov, E. Electrochemistry of bismuth interlayers in (Bi2)m(Bi2Te3)n superlattice. J Solid State Electr. 2021, 25(12), 2807—2819. Doi: 10.1007/s10008-021-05068-9 (IF: 2,647).
     
  • Bakavets, A.; Aniskevich, Y.; Ragoisha, G.; Tsyntsaru, N.; Cesiulis, H.; Streltsov, E. The optimized electrochemical deposition of bismuth-bismuth telluride layered crystal structures. IOP Conf Ser Mater Sci Eng. 2021, 1140, 012016-1—012016-7. Doi: 10.1088/1757-899X/1140/1/012016.
     
  • Баранов, С.А.; Дикусар, А.И. Кинетика электрохимической нанонуклеации при индуцированном соосаждении металлов группы железа с тугоплавкими металлами (W, Mo, Re). Электронная обработка материалов. 2021, 57(5), 1—12. Doi: 10.52577/eom.2021.57.5.01.
     
  • Auchynnikau, Y.; Pinchuk, T.; Eisymont, E.; Mihailov, V.; Kazak, N.; Bahanovich, L. Morphological and structural features of electrospark coatings. În: Proceedings MATERIAL SCIENCE ”Nonequilibrium phase transformations”, Year V, Issue 1(5), September 2021. VII International Scientific Conference, 6 September, 2021, Varna, Bulgaria, p. 67—69. ISSN: 2535-0218.
     
  • Myrzak, V.; Gotelyak, A.V.; Dikusar, A.I. Size Effects in the Surface Properties of Electroplated Alloys between Iron Group Metals and Tungsten. Surf Eng Appl Elect. 2021, 57(4), 409—418. Doi: 10.3103/S1068375521040128.
     
  • Mazeika, K.; Reklaitis, J.; Nicolenco, A.; Vainoris, M.; Tsyntsaru, N.; Cesiulis, H. Magnetic state instability of disordered electrodeposited nanogranular Fe films. J Magn Magn Mater. 2021, 540, 168433. Doi: 10.1016/j.jmmm.2021.168433 (IF: 2,993).
     
  • Belevskii, S.; Silkin, S.; Tsyntsaru, N.; Cesiulis, H.; Dikusar, A. The Influence of Sodium Tungstate Concentration on the Electrode Reactions at Iron–Tungsten Alloy Electrodeposition. Coatings. 2021, 11(8), 981-1—981-14. Doi: 10.3390/coatings11080981 (IF: 2,881).
     
  • Baranov, S.A. On the Size Dependence of the Surface Tension for Micro-and Nanocylinder. J Anal Tech Res. 2021, 3(2), 39—45. ISSN 2687-8038. Doi: 10.26502/jatri.021.
     
  • Baranov, S.A. Modeling of Micro- and Nanocylinder. J Anal Tech Res. 2022, 3(2), 28—38. ISSN 2687-8038. Doi: 10.26502/jatri.020.
     
  • Baranov, S.A. Modeling of a nanocylinder. Moldavian Journal of the Physical Sciences. 2021, 20(1), 46—55. Doi: 10.53081/mjps.2021.20-1.03.
     
  • Baranov, S.A. Glass-coated microwires for composites. Moldavian Journal of the Physical Sciences. 2021, 20(1), 56—65. Doi: 10.53081/mjps.2021.20-1.04.
     
  • Овчинников, Е.В.; Чекан, Н.М.; Хвисевич, В.М.; Веремейчик, А.И.; Михайлов, В.В.; Казак, Н.Н. Cтруктура электроискровых нанокомпозиционных покрытий на металлической матрице. Вестник Брестского государственного технического университета. 2021, 1(124), 49—53. Doi 10.36773/1818-1212-2021-124-1-49-53.
     
  • Nicolenco, A.; Chen, Y.; Tsyntsaru, N.; Cesiulis, H.; Pellicer, E.; Sort, J. Mechanical, magnetic and magnetostrictive properties of porous Fe-Ga films prepared by electrodeposition. Mater Design. 2021, 208, 109915-1—109915-11. Doi: 10.1016/j.matdes.2021.109915 (IF: 6,289).
     
  • Nicolenco, A.; Navarro-Senent, C.; Sort, S. Nanoporous Composites With Converse Magnetoelectric Effects for Energy-Efficient Applications. În: Encyclopedia of Materials: Compozites. Volume 2 Ed. D.Brabazon, Elsevier, 2021, p. 450-460. ISBN: 978-0-12-819731-8. Doi: 10.1016/B978-0-12-803581-8.11870-3.
     
  • Nicolenco, A.; De H-Ora, M.; Yun, Ch.; Macmanus-Driscoll, J.L.; Sort, J. Strain-gradient effects in nanoscale-engineered magnetoelectric materials. APL Materials. 2021, 9(2), 020903-1—020903-9. Doi: 10.1063/5.0037421 (IF: 3,819).
     
  • Pуканскис, M.; Падгурскас, Ю.; Сабалюс, А.; Михайлов, В.; Казак, Н.; Жунда, А. Трение и износ электроискровых покрытий из молибдена, бронзы и комбинированного (Ti + Al + C) состава по стали 45 в среде смазки. Трение и износ. 2021, 42(1), 89—97. Doi: 10.21122/2220-9506-2021-42-1-89-97.
    Rukanskis, M.; Padgurskas, J.; Sabalius, A.; Michailov, V.; Kazak, N.; Zunda, A. Friction and Wear of Electrospark Coatings Made of Molybdenum, Bronze, and Combined (Ti + Al + C) Composition on Steel 45 in a Lubricant Medium. J Frict Wear. 2021, 42(1), 56—62. Doi: 10.3103/S1068366621010086 (IF: 0,606).
     
  • Dikusar, A.I.; Likrizon, E.A.; Dikusar, G.K. High-Rate Pulsed Galvanostatic Anodic Dissolution of Chromium−Nickel Steels in Electrolytes for Electrochemical Machining: The Role of Surface Temperature. Surf Eng Appl Elect. 2021, 57(1), 10—18. Doi: 10.3103/S106837552101004X.
     
  • Коваль, А.В. Исследование коррозионного поведения покрытий, полученных на стали при электроискровом легировании ручным вибратором повышенной частоты. Электронная обработка материалов. 2021, 57(1), 44—51. Doi: 10.5281/zenodo.4455859.
     
  • Cialone, M.; Nicolenco, A.; Robbennolt, S.; Menéndez, E.; Rius, G.; Sort, J. Voltage-Induced ON Switching of Magnetism in Ordered Arrays of Non-Ferrimagnetic Nanoporous Iron Oxide Microdisks. Adv Mater Interfaces. 2021, 8(1), 2001143-1—2001143-10. Doi: 10.1002/admi.202001143 (IF: 4,948).

Brevete de invenție/Patents

  • Gologan, V.; Sidelnicova, S.; Ivașcu, S.; Volodina, G. Procedeu de depunere a acoperirilor din electrolit pe bază de crom trivalent (Process for depositing trivalent chromium electrolyte coatings). Brevet de Invenție nr. MD 4720 C1 2021.05.31.
  • Gologan, V.; Sidelnicova, S.; Ivașcu, S.; Monaico, E. Procedeu de depunere a acoperirilor din electrolit pe bază de nichel (Process for depositing nickel-based electrolyte coatings). Brevet de Invenție nr. MD 4721 C1 2021.05.31.
     
  • Parșutin V.; Covali, A. Procedeu de protecție a oțelului de coroziune în apă (Process for protecting steel from corrosion in water). Brevet de Invenție nr. MD 1496 Z 2021.08.31.
     
  • Parșutin V.; Covali, A. Procedeu de protecție a oțelului de coroziune în apă (Process for protecting steel from corrosion in water). Brevet de Invenție nr. MD 1495 Z 2021.08.31.
     
  • Parșutin V.; Covali, A. Procedeu de protecție a oțelului de coroziune în apă (Process for protecting steel from corrosion in water). Brevet de Invenție nr. MD 1494 Z 2021.08.31.
     
  • Parșutin V.; Paramonov A.; Covali, A.; Agafii, V. Dispozitive de prelucrare electrochimică dimensională combinată cu laser a metalelor (Devices for dimensional electrochemical processing combined with laser of metals). Brevet de Invenție nr. MD 4743 C1 2021.09.30.
     
  • Parșutin V.; Covali, A. Procedeu de protecție a oțelului de coroziune în apă (Process for protecting steel from corrosion in water). Brevet de Invenție nr. MD 1507 Z 2021.09.30.

2020

  • Казак, Н.Н.; Овчинников, Е.В.; Михайлов, В.В.; Чекан, Н.М. Электрохимическое поведение композиционных покрытий, получаемые методом электроискрового легирования. Горная механика и машиностроение. 2021, 2020(2), 1—7. ISSN 1728-3841.
     
  • Yurchenko, V.I; Yurchenko, E.V.; Dikusar, A.I. Thick-Layer Nanostructured Electrospark Coatings of Aluminum and Its Alloys. Surf Eng Appl Elect. 2020, 56(6), 656—664. ISSN 1068-3755. Doi 10.3103/S1068375520060162.
     
  • Мырзак, В.; Готеляк, А.В.; Дикусар, А.И. О размерных эффектах свойств поверхностей,  полученных при электроосаждении сплавов металлов группы железа с вольфрамом. Электронная обработка материалов. 2020, 56(6), 1—11. Doi: 10.5281/zenodo.4299831.
     
  • Кройтору, Д.М.; Силкин, С.А.; Казак, Н.Н.; Ивашку, С.Х.; Петренко, В.И.; Поштару, Г.И.; Юрченко, В.И.; Юрченко, Е.В. Физико-механические и трибологические свойства углеродсодержащих поверхностных нанокомпозитов, полученных электроискровым легированием. Электронная обработка материалов. 2020, 56(6), 12—23. Doi: 10.5281/zenodo.4299860.
     
  • Дикусар, А.И.; Ликризон, Е.А.; Дикусар, Г.К. Высокоскоростное импульсно-гальваностатическое анодное растворение хромоникелевых сталей в электролитах для их электрохимической размерной обработки. Роль поверхностной температуры. Электронная обработка материалов. 2020, 56(6), 24—33. Doi: 10.5281/zenodo.4299735.
     
  • Vernickaitė, E.; Lelis, M.; Tsyntsaru, N.; Pakštas, V.; Cesiulis, H. XPS studies on the Mo oxide-based coatings electrodeposited from highly saturated acetate bath. Chemija. 2020, 31(4), 203—209 (IF: 0,305).
     
  • Levinas, R.; Tsyntsaru, N.; Cesiulis, H. The Characterisation of Electrodeposited MoS2 Thin Films on a Foam-Based Electrode for Hydrogen Evolution. Catalists. 2020, 10(10), 1182-1—1182-18. Doi: 10.3390/catal10101182 (IF: 3,520).
     
  • Baranov, S.A. Modeling of micro-and nanodroplets. Moldavian Journal of the Physical Sciences. 2020, 19(1-2), 45—53. Doi: 10.5281/zenodo.4118657.
     
  • Adar, E.; Baranov, S.A.; Sobolev, N.A.; Yosher, A.M. Ferromagnetic resonance in cast microwires and its application for noncontact diagnostics. Moldavian Journal of the Physical Sciences. 2020, 19(1-2), 89—97. Doi: 10.5281/zenodo.4118691.
     
  • Baranov, S.A. Ferromagnetic Resonance in Cast Microwires and its Application for The Non-Contact Diagnostics. Glob J Eng Sci. 2020, 5(4), GJES.MS.ID.000619-1—GJES.MS.ID.000619-2. Doi: 10.33552/GJES.2020.05.000619.
     
  • Овчинников, Е.В.; Михайлов, В.В.; Чекан, Н.М.; Пинчук, Т.И. Структурные особенности нанокопозиционых покрытий, получаемых методом электроискрового легирования. Горная механика и машиностроение. 2020 (1), 93—100. ISSN 1728-3841.
     
  • Gamburg, Y.D., Baranov, S.A.  Typical Cluster Sizes in Metal Electrodeposition. Surf Eng Appl Elect. 2020, 56(2), 147—158. Doi: 10.3103/S1068375520020076.
     
  • Danil’chuk, V.V.; Shul’man, A.I.; Gotelyak, A.V.; Yushchenko, S.P.; Kovalenko, K.V.; Dikusar, A.I. Electrodeposition of Fe–W Coatings from a Citric Bath with Use of Divided Electrolytic Cell. Russ J Appl Chem. 2020, 93(3), 375379. Doi: 10.1134/S107042722003009X (IF: 0,508).
     
  • Belevskii, S.S.; Danilchuk, V.V.; Gotelyak, A.V.; Lelis, M.; Yushchenko, S.P.; Dikusar, A.I. Electrodeposition of Fe–W Alloys from Citrate Bath: Impact of Anode Material. Surf Eng Appl Elect. 2020, 56(1) 1—12. Doi: 10.3103/S1068375520010020.
     
  • Robbennolt, S.; Yu, P.; Nicolenco, A.; Fernandez, P.M., Coll, M.; Sort, J.  Magneto-ionic control of magnetism in two-oxide nanocomposite thin films comprising mesoporous cobalt ferrite conformally nanocoated with HfO2. Nanoscale. 2020, 12(10), 5987—5994. Doi: 10.1039/C9NR10868H (IF: 6,970).
     
  • Белевский, С.С.; Данильчук, В.В.; Готеляк, А.В.; Лелис, М.; Ющенко, С.П.; Дикусар, А.И. Электроосаждение Fe-W сплавов из цитратного электролита. Роль материала анода. Электронная обработка материалов. 2020, 56(1), 14—26. Doi: 10.5281/zenodo.3639943.
     
  • Анисович, А.Г.; Филатова, И.И.; Гончарик, С.В.; Гологан, В.Ф.; Бобанова, Ж.И. Изменение гальванического покрытия меди при воздействии холодной плазмы воздуха. Электронная обработка материалов. 2020, 56(1), 44—49. Doi: 10.5281/zenodo.3640444.
     
  • Парамонов, А.М.; Коваль, А.В. Разработка источников питания для электроискрового легирования с ручным вибрирующим электродом. Электронная обработка материалов. 2020, 56(1), 67—75. Doi: 10.5281/zenodo.3640580.
     
  • Nicolenco, A.; Gómez, A.; Chen, X.-Z.; Menéndez, E.; Fornell, J.; Pané, S.; Pellicer, E., Sort, J. Strain gradient mediated magnetoelectricity in Fe-Ga/P(VDF-TrFE) multiferroic bilayers integrated on silicon. Appl Mater Today. 2020, 19, 100579-1—100579-8. Doi 10.1016/j.apmt.2020.100579 (IF: 8,013).
     
  • Mulone, A.; Nicolenco, A.; Imaz, N.; Fornell, J.; Sort, J.; Klement, U. Effect of heat treatments on the mechanical and tribological properties of electrodeposited Fe–W/Al2O3 composites. Wear. 2020, 448-449, 203232. Doi: 10.1016/j.wear.2020.203232 (IF: 2,95).

Brevete de invenție/Patents

  • Parșutin, V.; Cernîșeva, N.; Covali, A.; Baca, S.; Kravțov, V.; Stati, D. Inhibitor de coroziune a oțelului în apă (Steel corrosion inhibitor in water). Brevet de Invenție nr. MD 1427 Z 2020.12.31.
     
  • Parșutin, V.; Cernîșeva, N.; Covali, A.; Agafii, V. Procedeu de protecție a oțelului de coroziune în apă (Process for protecting steel from corrosion in water). Brevet de invenție MD 1371 Z 2020.04.30.
     
  • Parșutin, V.; Paramonov, A.; Șchileov, V.; Covali, A.; Cernîșeva, N.; Agafii, V. Electrod-sculă și procedeu pentru prelucrarea electrochimică dimensională combinată cu laser a metalelor (Electrode tool and method for dimensional electrochemical processing combined with laser of metals). Brevet de Invenție nr. MD 1376 Z 2020.07.31.
     
  • Parșutin, V.; Șoltoian, N.; Cernîșeva, N.; Covali, A.; Agafii, V. Procedeu de protecție a ațelului împotriva coroziunii în apă (Process for protecting steel against corrosion in water). Brevet de Invenție nr. MD 1382 Z 2020.07.31.
     
  • Parșutin, V.; Șoltoian, N.; Cernîșeva, N.; Covali, A.; Agafii, V. Procedeu de protecție a oțelului împotriva coroziunii în apă (Process for protecting steel against corrosion in water). Brevet de Invenție nr. MD 1397 Z 2020.08.31.
     
  • Parșutin, V.; Șoltoian, N.; Cernîșeva, N.; Covali, A.; Agafii, V. Procedeu de protecție a oșelului împotriva coroziunii în apă (Process for protecting steel against corrosion in water). Brevet de Invenție nr. MD 1416 Z 2020.10.31.
     
  • Parșutin, V.; Șoltoian, N.; Cernîșeva, N.; Covali, A.; Agafii, V. Procedeu de protecție a oșelului împotriva coroziunii în apă (Process for protecting steel against corrosion in water). Brevet de Invenție nr. MD 1415 Z 2020.10.31.
     
  • Parșutin, V.; Șoltoian, N.; Cernîșeva, N.; Covali, A.; Agafii, V. Procedeu de protecție a oșelului împotriva coroziunii în apă (Process for protecting steel against corrosion in water). Brevet de Invenție nr. MD 1414 Z 2020.10.31.
     
  • Parșutin, V.; Paramonov, A.; Covali, A.; Agafii, V. Electrod-sculă pentru prelucrarea electrochimică dimensională (Electrode tool for dimensional electrochemical processing). Brevet de Invenție nr. MD 1413 Z 2020.10.31.

2019

  • Михайлов, В.В.; Овчинников, Е.В.; Эйсымонт, Е.И.; Казак, Н.Н.; Пинчук, Т.И.; Ховатов, П.А. Физико-механические характеристики нанокомпозитных покрытий , формируемых методом электроискрового легирования. Веснік Гродзенскага дзяржаўнага ўніверсітэта імя Янкі Купалы. Серыя 6. Тэхніка. 2019, 9(2), 45—53. ISSN 2223-5396.
     
  • Юрченко, В.И.; Юрченко, Е.В.; Дикусар, А.И. Толстослойные наноструктурированные электроискровые покрытия алюминия и его сплавов. Электронная обработка материалов. 2019, 55(5), 1—9. ISSN 0013-5739.Doi: 10.5281/zenodo.3522301.
     
  • Анисович, А.Г.; Урбан, Т.П.; Терешко, И.В.; Логвин, В.А.; Гологан, В.Ф.; Бобанова, Ж.И. Трансформация структуры гальванического покрытия меди после воздействия плазмы тлеющего разряда. Электронная обработка материалов. 2019, 55(5), 31—37. ISSN 0013-5739.Doi: 10.5281/zenodo.3522287.
     
  • Adar, E.; Avdeev, A.; Baranov, S.; Kilo, M.; Sobolev, N.A.; Yosher, A. Microwires for medical applications. Mold J Phys Sci. 2019, 18(1-4), 46—52. ISSN 1810-648X.
     
  • Robbennolt, S.; Nicolenco, A., Fernandez, P.M.; Auffret, S.; Baltz, V.; Pellicer, E.; Menéndez, E.; Sort, J. Electric Field Control of Magnetism in Iron Oxide Nanoporous Thin Films. ACS Appl Mater Inter 2019 11(40), 37338—37346. Doi: 10.1021/acsami.9b13483 (IF: 8,456).
     
  • Mikhailov, V.V.; Kazak, N.N.; Agafii, V.I.; Yanakevich, A.I. Synthesis of Carbide Phases in Surface Metal Layers Under Electrospark Alloying with Graphite and Transition Metals in Groups IV–VI. Powder Metall Met C. 2019, 58(5-6), 307—311. Doi: 10.1007/s11106-019-00079-8 (IF: 0,381).
     
  • Silkin, S.A.; Aksenov, E.N.; Likrizon, E.A.; Petrenko, V.I.; Dikusar, A.I. Improving Spatial Confinement of Anodic Dissolutionof Heat-Resistant Chromium−Nickel Alloys during Pulsed Electrochemical Machining. Surf Eng Appl Elect. 2019, 55(5), 493—501. Doi: 10.3103/S10 68375519 050120.
     
  • Kazak, N. Sintetizarea prin electroeroziune a carburilor pe suprafețele metalice. Akademos. 2019, 2(53), 31—34. Doi: 10.5281/zenodo.3364304.
     
  • Baranov, S.A.; Rekhviashvili, S.Sh.; Sokurov, A.A. Some Problems in Simulation of the Thermodynamic Properties of Droplets. Surf Eng Appl Elect. 2019, 55(3), 286—293. Doi: 10.3103/S1068375519030025.
     
  • Levinas, R.; Tsyntsaru, N.; Cesiulis, H. Insights into electrodeposition and catalytic activity of MoS2 for hydrogen evolution reaction electrocatalysis. Electrochim Acta. 2019, 317, 427—436. Doi: 10.1016/j.electacta.2019.06.002 (IF: 5,383).
     
  • Bobanova, Zh.; Petrenko, V.; Tsyntsaru, N.; Dikusar, A. Leveling Power of Co-W and Fe-W Electrodeposited Coatings. Key Engineering Materials. 2019, 813, 248—253. Doi: 10.4028/www.scientific.net/KEM.813.248.
     
  • Kukareko, V.; Agafii, V.; Mihailov, V.; Grigorchic, A.; Kazak, N. Evaluation of Tribological Properties of Hard Coatings Obtained on Steel C45 by Electro-Dspark Alloying. Key Engineering Materials. 2019, 813, 381—386. Doi: 10.4028/www.scientific.net/KEM.813.381.  
     
  • Katinas, E.; Jankauskas, V.; Kazak, N.; Michailov, V. Improving Abrasive Wear Resistance for Steel Hardox 400 by Electro-Spark Deposition. J Frict Wear. 2019, 40(1), 100—106. Doi: 10.3103/S1068366619010070 (IF: 0,574).
     
  • Vainoris, M.; Tsyntsaru, N.; Cesiulis, H. Modified Electrodeposited Cobalt Foam Coatings as Sensors for Detection of Free Chlorine in Water. Coatings. 2019, 9(5), 306-1—306-15.  Doi: 10.3390/coatings9050306 (IF: 2,350).
     
  • Гамбург, Ю.Д.; Баранов, С.А. Характерные размеры кластеров при электроосаждении металлов. Электронная обработка материалов. 2019, 55(3), 23—35. Doi: 10.5281/zenodo.3244423.
     
  • Belevskii,S.S.; Gotelyak, A.V.; Silkin, S.A.; Dikusar, A.I. Macroscopic Size Effect on the Microhardness of Electroplated Iron Group Metal—Tungsten Alloy Coatings: Impact of Electrode Potential and Oxygen-Containing Impurities. Surf Eng Appl Elect. 2019, 55(1), 46—52. Doi: 10.3103/S1068375519010058.
     
  • Belevskii, S.S.; Gotelyak, A.V.; Yushchenko, S.P.; Dikusar, A.I. Electrodeposition of Nanocrystalline Fe—W Coatings from a Citrate Bath. Surf Eng Appl Elect. 2020, 55(2), 119—129. Doi: 10.3103/S1068375519020054.
     
  • Силкин, С.А.; Аксенов, Е.Н.; Ликризон, Е.А.; Петренко, В.И.; Дикусар, А.И. Локализация анодного растворения жаропрочных хромоникелевых сплавов в условиях импульсной электрохимической размерной обработки. Электронная обработка материалов. 2019, 55(2), 1—9. Doi: 10.5281/zenodo.2629536.
     
  • Nicolenco, A.; Mulone, A., Imaz, N., Tsyntsaru, N., Sort, J.; Pellicer, E.; Klement, U.; Cesiulis, H.; García-Lecina, E. Nanocrystalline Electrodeposited Fe-W/Al2O3 Composites: Effect of Alumina Sub-microparticles on the Mechanical, Tribological, and Corrosion Properties. Front Chem. 2019, 7, 241-1—241-15. Doi: 10.3389/fchem.2019.00241 (IF: 4,155).
     
  • Vernickaitė, E.; Bersirova, O.; Cesiulis, H.; Tsyntsaru, N. Design of Highly Active Electrodes for Hydrogen Evolution Reaction Based on Mo-Rich Alloys Electrodeposited from Ammonium Acetate Bath. Coatings. 2019, 9(2), 85-1—85-15. Doi: 10.3390/coatings9020085 (IF: 2,350).
     
  • Mulone, A.; Nicolenco, A., Imaz, N.; Martinez-Nogues, V.;Tsyntsaru, N.; Cesiulis, H.; Klement, U. Improvement in the Wear Resistance under Dry Friction of Electrodeposited Fe-W Coatings through Heat Treatments. Coatings. 2019, 9(2), 66-1—66-13. Doi: 10.3390/coatings9020066 (IF: 2,350).

Brevete de invenție/Patents

  • Parșutin, V.; Șoltoian, N.; Cernîșeva, N.; Covali, A.; Coropceanu, E.; Bulhac, I. Inhibitor de coroziune a oțelului în apă (Inhibitor of steel corrosion in water) . Brevet de Invenție nr. MD 1257 Z 2019.01.31.
     
  • Gologan, V.; Sidelnicova, S.; Ivașcu, S. Procedeu de depunere a acoperirilor din electrolit pe bază de crom trivalent (Coating process from electrolyte based on trivalent chromium). Brevet de Invenție nr. MD 4603 B1 2018.11.30.
     
  • Parșutin, V.; Cernîșeva, N.; Covali, A.; Agafii, V. Inhibitor de coroziune a oțelului în apă (Steel corrosion inhibitor in water). Brevet de Invenție nr. MD 1329 Z 2019.10.31.

2018

  • Baranov, S.A. Cast amorphous magnetic microwires for madical applications. Adv Biotech & Micro. 2018, 8(3), 555736. ISSN 2474-7637. Doi: 10.19080/AIBM.2018.08.555736.
     
  • Danil'chuk, V.V.; Silkin, S.A.; Gotelyak, A.V.; Buravets, V.A.; Mitina, T.F.; Dikusar, A.I. The Mechanical Properties and Rate of Electrodeposition of Co-W Alloys from Boro-Gliconate Bath: Impact of Anodic Processes. Russ J Electrochem. 2018, 54(11), 908—914. Doi:10.1134/S1023193518130116 (IF: 0,880).
     
  • Baranov, S.A.; Dobynde, I.I. lnvestigation of orientation magnetic phase translation for use in ultrafast optomagnetic bistable effects. Mold J Phys Sci. 2018, 17(3-4), 138—141.
     
  • Padgurskas, J.; Rukuiža, R.; Žunda, A.; Michailov, V.; Gventsadze, D.; Kutelia, E. Influence of silver surface treatment and frictional materials on the operating properties of piezo-electric actuators. Tribol Int. 2018, 120, 179—186. Doi: 10.1016/j.triboint.2017.12.039 (IF: 3,246).
     
  • Белевский, С.С.; Готеляк, А.В.; Ющенко, С.П.; Дикусар, А.И. Электроосаждение нанокристаллических Fe-W покрытий из цитратного электролита . Электронная обработка материалов. 2018, 54(5), 31—42. Doi: 10.5281/zenodo.1464843.
     
  • Юрченко, В.И.; Юрченко, Е.В.; Дикусар, А.И. Применение барьерных слоев при получении наноструктурированных электроискровых покрытий повышенной толщины на алюминиевых сплавах. Электронная обработка материалов. 2018, 54(4), 9—13. Doi: 10.5281/zenodo.1345710.
     
  • Cesiulis, H.; Tsyntsaru, N., Podlaha, E.J.; Li, D.; Sort, J. Electrodeposition of Iron-Group Alloys into Nanostructured Oxide Membranes: Synthetic Challenges and Properties. Curr Nanosci. 2018, 14, 1—16. Doi: 10.2174/1573413714666180410154104 (IF: 1,062).
     
  • Mulone, A.; Nicolenco, A.; Fornell, J.; Pellicer, E.; Tsyntsaru, N.; Cesiulis, H.; Sort, J.; Klement, U. Enhanced mechanical properties and microstructural modifications in electrodeposited Fe-W alloys through controlled heat treatments. Surf Coat Tech. 2018, 350, 20—30. Doi: 10.1016/j.surfcoat.2018.07.007 (IF: 2,589).
     
  • Белевский, С.С.; Готеляк, А.В.; Силкин, С.А.; Дикусар, А.И. Макроскопический размерный эффект микротвердости покрытий из сплавов металлов группы железа с вольфрамом: роль электродного потенциала и кислородсодержащих примесей. Электронная обработка материалов. 2018, 54(2), 9—15. Doi: 10.5281/zenodo.1228850.
     
  • Баранов, С.А.; Рехвиашвили, С.Ш.; Сокуров, A.A. Некоторые вопросы моделирования термодинамических свойств малых капель. Электронная обработка материалов. 2018, 54(2), 63—71. Doi: 10.5281/zenodo.1228887.
     
  • Nicolenco, A.; Tsyntsaru, N.; Matijošius, T.; AsaParamonov, A.;dauskas, S.; Cesiulis, H. Wear resistance of electrodeposited Fe-W alloy coatings under dry conditions and in the presence of rapeseed oil. Green Tribology. 2018, 1(1), 16—23. Doi: 10.15544/greentribo.2018.04.
     
  • Belevskii, S.S.; Bobanova, J.I.; Buravets, V.A.; Gotelyak, A.V.; Danilchuk, V.V.; Silkin, S.A.; Tsyntsaru, N.I.; Dikusar, A.I. The influence of gluconate bath parameters on the rate of electrodeposition and mechanical properties of Co–W coatings. În: BALTTRIB 2017,  Proceedings, Kaunas, 2018. 9th International Scientific Conference "BALTTRIB 2017", 16-17 November 2017, Aleksandras Stulginskis University, Kaunas  district, Lithuania, p. 7—12. ISBN: 978-609-449-127-6. Doi: 10.15544/balttrib.2017.03.
     
  • Agafii, V.; Mihailov, V.; Kazak, N.; Volodina, G.; Cracan, C. Increase of wear resistance of Cr18Ni10Ti stainless steel by method of electric-spark alloying with electrodes of refractory metals and graphite. În: BALTTRIB 2017,  Proceedings, Kaunas, 2018. 9th International Scientific Conference "BALTTRIB 2017", 16-17 November 2017, Aleksandras Stulginskis University, Kaunas  district, Lithuania, p. 53—56. ISBN: 978-609-449-127-6. Doi: 10.15544/balttrib.2017.11.
     
  • Vernickaite, E.; Cesiulis, H.; Tsyntsaru, N. Evaluation of corrosion and tribological behavior of electrodeposited tungsten alloys. În: BALTTRIB 2017,  Proceedings, Kaunas, 2018. 9th International Scientific Conference "BALTTRIB 2017", 16-17 November 2017, Aleksandras Stulginskis University, Kaunas  district, Lithuania, p. 207—214. Doi: 10.15544/balttrib.2017.36.
  • Mulone, A.; Nicolenco, A.; Hoffmann, V.; Klement, U.; Tsyntsaru, N.; Cesiulis, H. In-depth characterization of as-deposited and annealed Fe-W coatings electrodeposited from glycolate-citrate plating bath. Electrochim Acta. 2018, 261, 167—177. Doi: 10.1016/j.electacta.2017.12.051 (IF: 4,798).

  • Nicolenco, A.; Tsyntsaru, N.; Fornell, J.; Pellicer, E.; Reklaitis, J.; Baltrunas, D.; Cesiulis, H.; Sort, J. Mapping of magnetic and mechanical properties of Fe-W alloys electrodeposited from Fe(III)-based glycolate-citrate bath. Mater Design. 2018, 139, 429—438. Doi: 10.1016/j.matdes.2017.11.011 (IF: 4,364).

Brevete de invenție/Patents

  • Paramonov, A.; Parșutin, V.; Șchileov, V.; Covali, A.; Agafii, V. Electrod-sculă și procedeu de prelucrare electrochimică dimensională. Brevet de Invenție nr. MD 4547 C1 20-18.08.31.
     
  • Parșutin, V.; Șoltoian, N.; Cernîșeva, N.; Covali, A.; Bologa, O.; Bulhac, I.; Verejan, A. Utilizarea clorurii de tris(tiosemicarbazid)cobalt(III) în calitate de inhibitor de coroziune a oțelului în apă. Brevet de Invenție nr. MD 4493 C1 2018.01.31.
     
  • Parșutin, V.; Paramonov, A.; Șchileov, V.; Covali, A.; Agafii, V. Procedeu de obținere a marcajului de identificare pe un purtător metalic. Brevet de Invenție nr. MD 1199 Z 2018.04.30.
     
  • Parșutin, V.; Paramonov, A.; Șchileov, V.; Covali, A.; Agafii, V. Dispozitiv pentru aplicarea imaginii individuale pe un obiect electroconductor. Brevet de Invenție nr. MD 1200 Z 2018.04.30.
     
  • Paramonov, A.; Parșutin, V.; Șchileov, V.; Covali, A.; Agafii, V. Dispozitiv de aplicare a codurilor informaționale securizate. Brevet de Invenție nr. MD 1201 Z 2018.04.30.

2017

  • Baranov, S.A. Comparison of Classical Nucleation Theory and Modern Theory of Phase Transition. J Adv Chem Eng. 2017, 7(2), 177-1—177-3. Doi: 10.4172/2090-4568.1000177.
     
  • Baranov, S.A.; Savchuk, A.T. Magnetic properties of amorphous magnetic Fe-based microwires. Moldavian Journal of the Physical Sciences. 2017, 16(3-4), 182—190. ISSN 1810-648X.
     
  • Baranov, S. An engineering review about microwire. Lambert Academic Publishing, 2017. 52 pag. ISBN 978-6202003216.
     
  • Gologan, V.F.; Bobanova, Zh.I.; Ivashku, S.Kh.; Sidelnikova, S.P. The Dependence of Properties of the Electroplated Coatings on the Spectrum of the Variable Components of the Current (Voltage). Int J Res Stud Sci Eng Techn. 2017, 4(5), 1—9. Doi: 10.22259/ijrsset.0405001
     
  • Gotelyak, A.V.; Silkin, S.A.; Yakhova, E.A.; Dikusar, A.I. Effect of pH and Volume Current Density on Deposition Rate and Microhardness of Co–W Coatings Electrodeposited from Concentrated Boron‒Gluconate Electrolyte. Russ J Appl Chem. 2017, 90(4), 541—546. Doi: 10.1134/S1070427217040085 (IF: 0,375).
     
  • Padgurskas, J.; Kreivaitis, R.; Rukuiža, R.; Mihailov, V.; Agafii, V.; KriÅ«kienė, R.; Baltušnikas, A. Tribological properties of coatings obtained by electro-spark alloying C45 steel surfaces. Surf Coat Tech. 2017, 311, 90—97. Doi: 10.1016/j.surfcoat.2016.12.098 (IF: 2,589).
     
  • Baranov, S.A.; Larin, V.S.; Torcunov, A.V. Technology, Preparation and Properties of the Cast Glass-Coated Magnetic Microwires. Crystals. 2017, 7(6), 136-1—136-12. Doi: 10.3390/cryst7060136 (IF: 1,566).
     
  • Belyakov, A.V.; Gorbachev, A.N.; Mikhailov, V.V.; Reutov, B.F.; Fokin, A.A.  Installations for producing electrospark erosion- and abrasion-resistant coatings on the blades of steam turbines of thermal and nuclear power plants. Surf Eng Appl Elect. 2017, 53(3), 274—284. Doi: 10.3103/S1068375517030036
     
  • Nicolenco, A.; Tsyntsaru, N.; Cesiulis, H. Fe (III)-Based Ammonia-Free Bath for Electrodeposition of Fe-W Alloys. J Electrochem Soc. 2017, 164(9), D590—D596. Doi: 10.1149/2.1001709jes  (IF: 3,014).
     
  • Baranov, S.A. On the possibility of using the Cahn–Hilliard model to describe electrodeposition of nanostructures. Surf Eng Appl Elect. 2017, 53(2), 124—136. Doi: 10.3103/S1068375517020028.
     
  • Silkin, S.A. Gotelyak, A.V. Tsyntsaru, N.I.; Dikusar, A.I. Electrodeposition of alloys of the iron group metals with tungsten from citrate and gluconate solutions: Size effect of microhardness. Surf Eng Appl Elect. 2017, 53(1), 7—14. Doi:  10.3103/S1068375517010136.
     
  • Baranov, S.A. Dependence of magnetic properties of micro- and nanowires on stress and magnetic heat treatment. Surf Eng Appl Elect. 2017, 53(1), 77—88. Doi: 10.3103/S1068375517010021.
     
  • Levinas, R.; Tsyntsaru, N.; Lelis, M.; Cesiulis, H. Synthesis, electrochemical impedance spectroscopy study and photoelectrochemical behaviour of as-deposited and annealed WO3 films. Electrochim Acta. 2017, 225, 29—38. Doi: 10.1016/j.electacta.2016.12.112 (IF: 4,803).
     
  • Savchuk, A.; Baranov, S. Magnetic properties of amorphous magnetic Co-based microwires. Mold J Phys Sci, 2017, 16(1-2), 70-77.

Brevete de invenție/Patents

  • Parșutin, V.; Paramonov, A.; Covali, A.; Șchileov, V.; Agafii, V. Instalație pentru aplicarea imaginii individuale pe obiectul electroconductor și procedeu de identificare a acestuia. Brevet de Invenție nr. MD 1121 din 2017.09.30.
     
  • Paramonov, A.; Covali, A.; Parșutin, V.; Bologa, M.; Șchileov, V. Instalație de obținere a semifabricatului cu cod alfanumeric și procedeu de fabricare a clișeului pentru imprimarea codului alfanumeric în relief. Brevet de Invenție nr. MD 1143 Z 2017.11.30.
     
  • Parșutin, V.; Bologa, M.; Paramonov, A.; Covali, A.; Șchileov, V. Instalație și procedeu de aplicare a imaginii individuale pe un obiect electroconductor. Brevet de Invenție nr. MD 1149 Z 2017.12.31.

 

 

 

report a bug close

Report a bug