| ||||||||||||||
or
| ||||||||||||||
Contacts: Institute of Applied Physics 5 Academiei str. Chisinau, MD-2028 MOLDOVA (Rep. of) phone: +(373) 22 738150 fax: +(373) 22 738149 email: [javascript protected email address] |
The diffraction elements have many applications in optoelectronics, as gratings, lenses, filters, beam splitters, and etc. On the other hand chalcogenide glasses have a low cost and the ease of manufacturing, are excellent transmitting materials for IR region of the spectrum, with high light sensitivity, high refractive index and have pronounced photoinduced optical properties. Because the chalcogenide glass in the form of amorphous thin films exhibit different photoinduced effects, they successfully used as a phororezists, as a recording medium, as medium to create and store images or optical data using holography, integrated optics and electron-beam lithography, for forming of surface-relief gratings. The proposed project deals with the study of formation of amplitude and phase diffractive gratings in amorphous As-S-Se-Sn and As-Se-Ge layers by holographical and e-beam lithography, as well as by combination of these methods for nanolithography. The main goal of the Project was elaboration of optical diffractive elements and complex diffraction structures based on chalcogenide glasses, characterization and optimization of parameters of obtained elements and structures to selecting the best system one. The main objectives of the project were:
Project team:
|
|||||||||||||